Segmentation of Medical Images using Fuzzy Mathematical Morphology
نویسنده
چکیده
Currently, Mathematical Morphology (MM) has become a powerful tool in Digital Image Processing (DIP). It allows processing images to enhance fuzzy areas, segment objects, detect edges and analyze structures. The techniques developed for binary images are a major step forward in the application of this theory to gray level images. One of these techniques is based on fuzzy logic and on the theory of fuzzy sets. Fuzzy sets have proved to be strongly advantageous when representing inaccuracies, not only regarding the spatial localization of objects in an image but also the membership of a certain pixel to a given class. Such inaccuracies are inherent to real images either because of the presence of indefinite limits between the structures or objects to be segmented within the image due to noisy acquisitions or directly because they are inherent to the image formation methods. Our approach is to show how the fuzzy sets specifically utilized in MM have turned into a functional tool in DIP.
منابع مشابه
Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method
Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملMedical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology
Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis ...
متن کاملPatch-Based White Blood Cell Nucleus Segmentation Using Fuzzy Clustering
Cell segmentation is one of important steps in the automatic white blood cell differential counting. In this paper, we propose a technique to segment singlecell images of white blood cells in bone marrow into two regions, i.e., nucleus and non-nucleus. The segmentation is based on the fuzzy C-means clustering and mathematical morphology. The segmentation results are compared to an expert’s manu...
متن کاملClassification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کامل